2,276 research outputs found

    C57BL/6 life span study: age-related declines in muscle power production and contractile velocity

    Get PDF
    Quantification of key outcome measures in animal models of aging is an important step preceding intervention testing. One such measurement, skeletal muscle power generation (force * velocity), is critical for dynamic movement. Prior research focused on maximum power (P max), which occurs around 30-40 % of maximum load. However, movement occurs over the entire load range. Thus, the primary purpose of this study was to determine the effect of age on power generation during concentric contractions in the extensor digitorum longus (EDL) and soleus muscles over the load range from 10 to 90 % of peak isometric tetanic force (P 0). Adult, old, and elderly male C57BL/6 mice were examined for contractile function (6-7 months old, 100 % survival; ~24 months, 75 %; and ~28 months, 50 % P 0). The shape of the force-velocity curve also changed with age (a/P 0 increased). In addition, there were prolonged contraction times to maximum force and shifts in the distribution of the myosin light and heavy chain isoforms in the EDL. The results demonstrate that age-associated difficulty in movement during challenging tasks is likely due, in addition to overall reduced force output, to an accelerated deterioration of power production and contractile velocity under heavily loaded conditions.R01 AG017768 - NIA NIH HHS; F31 AG044108 - NIA NIH HHS; T32 AG029796 - NIA NIH HHS; R01 EY15313 - NEI NIH HHS; R01 EY015313 - NEI NIH HH

    A Web/Grid Services Approach for Integration of Virtual Clinical & Research Environments

    No full text
    Clinicans have responsibilities for audit and research, often participating in projects with basic scientist colleagues. Our work in a regional teaching hospital setting involves collaboration with the medical school computer services and builds upon work developed in computer science department as part of the Collaborative Orthopaedic Research Environment (CORE) project[1]. This has established a pilot study for proof of concept work. Users are mapped to a personal profile implemented using XML and a service oriented architecture (SOA)[2,3]. This bridges the e-Health and e-Science domains, addressing some of the basic questions of security and uptake

    Brain Gene Expression Analysis: a MATLAB toolbox for the analysis of brain-wide gene-expression data

    Get PDF
    The Allen Brain Atlas project (ABA) generated a genome-scale collection of gene-expression profiles using in-situ hybridization. These profiles were co-registered to the three-dimensional Allen Reference Atlas (ARA) of the adult mouse brain. A set of more than 4,000 such volumetric data are available for the full brain, at a resolution of 200 microns. These data are presented in a voxel-by-gene matrix. The ARA comes with several systems of annotation, hierarchical (40 cortical regions, 209 sub-cortical regions in the whole brain), or non-hierarchical (12 regions in the left hemisphere, with refinement into 94 regions, and cortical layers). The high-dimensional nature of this unique dataset and the possible connection between anatomy and gene expression pose challenges to data analysis. We developed the Brain Gene Expression Analysis Toolbox (downloadable at: www.brainarchitecture.org). The key functionalities include: determination of marker genes for brain regions, statistical analysis of brain-wide co-expression patterns, and the computation of brain-wide correlation maps with cell-type specific microarray data. The auxiliary dataset consisting of cell-type-specific transcriptomes (chapter 4) will be made available in the second version of the toolbox

    Landau parameters of nuclear matter in the spin and spin-isospin channels

    Get PDF
    The equation of state of spin and isospin polarized nuclear matter is determined in the framework of the Brueckner theory including three-body forces. The Landau parameters in the spin and spin-isospin sectors are derived as a function of the baryonic density. The results are compared with the Gamow-Teller collective modes. The relevance of G0G_0 and G0G_0' for neutron stars is shortly discussed, including the magnetic susceptibility and the neutron star cooling.Comment: 2 pages, 2 figures, RevTex4 forma

    Fusion cross sections for superheavy nuclei in the dinuclear system concept

    Get PDF
    Using the dinuclear system concept we present calculations of production cross sections for the heaviest nuclei. The obtained results are in a good agreement with the experimental data. The experimentally observed rapid fall-off of the cross sections of the cold fusion with increasing charge number ZZ of the compound nucleus is explained. Optimal experimental conditions for the synthesis of the superheavy nuclei are suggested.Comment: 16 pages, LaTeX, including 3 postscript figure

    Treatment of competition between complete fusion and quasifission in collisions of heavy nuclei

    Get PDF
    A model of competition between complete fusion and quasifission channels in fusion of two massive nuclei is extended to include the influence of dissipative effects on the dynamics of nuclear fusion. By using the multidimensional Kramers-type stationary solution of the Fokker-Planck equation, the fusion rate through the inner fusion barrier in mass asymmetry is studied. Fusion probabilities in symmetric 90Zr+90Zr, 100Mo+100Mo, 110Pd+110Pd, 136Xe+136Xe, almost symmetric 86Kr+136Xe and 110Pd+136Xe reactions are calculated. An estimation of the fusion probabilities is given for asymmetrical 62Ni+208Pb, 70Zn+208Pb, 82Se+208Pb, and 48Ca+244Pu reactions used for the synthesis of new superheavy elements.Comment: 29 pages, LaTeX, including 7 postscript figures, to appear in Nucl. Phys.

    Area metric gravity and accelerating cosmology

    Get PDF
    Area metric manifolds emerge as effective classical backgrounds in quantum string theory and quantum gauge theory, and present a true generalization of metric geometry. Here, we consider area metric manifolds in their own right, and develop in detail the foundations of area metric differential geometry. Based on the construction of an area metric curvature scalar, which reduces in the metric-induced case to the Ricci scalar, we re-interpret the Einstein-Hilbert action as dynamics for an area metric spacetime. In contrast to modifications of general relativity based on metric geometry, no continuous deformation scale needs to be introduced; the extension to area geometry is purely structural and thus rigid. We present an intriguing prediction of area metric gravity: without dark energy or fine-tuning, the late universe exhibits a small acceleration.Comment: 52 pages, 1 figure, companion paper to hep-th/061213

    Cell-type-based model explaining coexpression patterns of genes in the brain

    Get PDF
    Spatial patterns of gene expression in the vertebrate brain are not independent, as pairs of genes can exhibit complex patterns of coexpression. Two genes may be similarly expressed in one region, but differentially expressed in other regions. These correlations have been studied quantitatively, particularly for the Allen Atlas of the adult mouse brain, but their biological meaning remains obscure. We propose a simple model of the coexpression patterns in terms of spatial distributions of underlying cell types and establish its plausibility using independently measured cell-typespecific transcriptomes. The model allows us to predict the spatial distribution of cell types in the mouse brain
    corecore